Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An exact $\sinΘ$ formula for matrix perturbation analysis and its applications (2011.07669v4)

Published 16 Nov 2020 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: In this paper, we establish a useful set of formulae for the $\sin\Theta$ distance between the original and the perturbed singular subspaces. These formulae explicitly show that how the perturbation of the original matrix propagates into singular vectors and singular subspaces, thus providing a direct way of analyzing them. Following this, we derive a collection of new results on SVD perturbation related problems, including a tighter bound on the $\ell_{2,\infty}$ norm of the singular vector perturbation errors under Gaussian noise, a new stability analysis of the Principal Component Analysis and an error bound on the singular value thresholding operator. For the latter two, we consider the most general rectangular matrices with full matrix rank.

Citations (2)

Summary

We haven't generated a summary for this paper yet.