Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perturbation expansions and error bounds for the truncated singular value decomposition (2009.07542v2)

Published 16 Sep 2020 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Truncated singular value decomposition is a reduced version of the singular value decomposition in which only a few largest singular values are retained. This paper presents a novel perturbation analysis for the truncated singular value decomposition for real matrices. First, we describe perturbation expansions for the singular value truncation of order $r$. We extend perturbation results for the singular subspace decomposition to derive the first-order perturbation expansion of the truncated operator about a matrix with rank greater than or equal to $r$. Observing that the first-order expansion can be greatly simplified when the matrix has exact rank $r$, we further show that the singular value truncation admits a simple second-order perturbation expansion about a rank-$r$ matrix. Second, we introduce the first-known error bound on the linear approximation of the truncated singular value decomposition of a perturbed rank-$r$ matrix. Our bound only depends on the least singular value of the unperturbed matrix and the norm of the perturbation matrix. Intriguingly, while the singular subspaces are known to be extremely sensitive to additive noises, the newly established error bound holds universally for perturbations with arbitrary magnitude. Finally, we demonstrate an application of our results to the analysis of the mean squared error associated with the TSVD-based matrix denoising solution.

Citations (24)

Summary

We haven't generated a summary for this paper yet.