Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

On a question of Haemers regarding vectors in the nullspace of Seidel matrices (2011.06435v2)

Published 12 Nov 2020 in math.CO and cs.DM

Abstract: In 2011, Haemers asked the following question: If $S$ is the Seidel matrix of a graph of order $n$ and $S$ is singular, does there exist an eigenvector of $S$ corresponding to $0$ which has only $\pm 1$ elements? In this paper, we construct infinite families of graphs which give a negative answer to this question. One of our constructions implies that for every natural number $N$, there exists a graph whose Seidel matrix $S$ is singular such that for any integer vector in the nullspace of $S$, the absolute value of any entry in this vector is more than $N$. We also derive some characteristics of vectors in the nullspace of Seidel matrices, which lead to some necessary conditions for the singularity of Seidel matrices. Finally, we obtain some properties of the graphs which affirm the above question.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.