Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An ensemble-based approach by fine-tuning the deep transfer learning models to classify pneumonia from chest X-ray images (2011.05543v1)

Published 11 Nov 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Pneumonia is caused by viruses, bacteria, or fungi that infect the lungs, which, if not diagnosed, can be fatal and lead to respiratory failure. More than 250,000 individuals in the United States, mainly adults, are diagnosed with pneumonia each year, and 50,000 die from the disease. Chest Radiography (X-ray) is widely used by radiologists to detect pneumonia. It is not uncommon to overlook pneumonia detection for a well-trained radiologist, which triggers the need for improvement in the diagnosis's accuracy. In this work, we propose using transfer learning, which can reduce the neural network's training time and minimize the generalization error. We trained, fine-tuned the state-of-the-art deep learning models such as InceptionResNet, MobileNetV2, Xception, DenseNet201, and ResNet152V2 to classify pneumonia accurately. Later, we created a weighted average ensemble of these models and achieved a test accuracy of 98.46%, precision of 98.38%, recall of 99.53%, and f1 score of 98.96%. These performance metrics of accuracy, precision, and f1 score are at their highest levels ever reported in the literature, which can be considered a benchmark for the accurate pneumonia classification.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube