Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Community Search in Dynamic Networks (2011.05353v1)

Published 10 Nov 2020 in cs.DS and cs.SI

Abstract: Community search is a well-studied problem which, given a static graph and a query set of vertices, requires to find a cohesive (or dense) subgraph containing the query vertices. In this paper we study the problem of community search in temporal dynamic networks. We adapt to the temporal setting the notion of \emph{network inefficiency} which is based on the pairwise shortest-path distance among all the vertices in a solution. For this purpose we define the notion of \emph{shortest-fastest-path distance}: a linear combination of the temporal and spatial dimensions governed by a user-defined parameter. We thus define the \textsc{Minimum Temporal-Inefficiency Subgraph} problem and show that it is \NPhard. We develop an algorithm which exploits a careful transformation of the temporal network to a static directed and weighted graph, and some recent approximation algorithm for finding the minimum Directed Steiner Tree. We finally generalize our framework to the streaming setting in which new snapshots of the temporal graph keep arriving continuously and our goal is to produce a community search solution for the temporal graph corresponding to a sliding time window.

Citations (4)

Summary

We haven't generated a summary for this paper yet.