Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Span-core Decomposition for Temporal Networks: Algorithms and Applications (1910.03645v2)

Published 6 Oct 2019 in cs.DS, cs.SI, and physics.soc-ph

Abstract: When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). In this paper we tackle this task by introducing a notion of temporal core decomposition where each core is associated with two quantities, its coreness, which quantifies how densely it is connected, and its span, which is a temporal interval: we call such cores \emph{span-cores}. For a temporal network defined on a discrete temporal domain $T$, the total number of time intervals included in $T$ is quadratic in $|T|$, so that the total number of span-cores is potentially quadratic in $|T|$ as well. Our first main contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the \emph{maximal span-cores}, i.e., span-cores that are not dominated by any other span-core by both their coreness property and their span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly extract the maximal ones without computing all span-cores. Finally, as a third contribution, we introduce the problem of \emph{temporal community search}, where a set of query vertices is given as input, and the goal is to find a set of densely-connected subgraphs containing the query vertices and covering the whole underlying temporal domain $T$. We derive a connection between this problem and the problem of finding (maximal) span-cores. Based on this connection, we show how temporal community search can be solved in polynomial-time via dynamic programming, and how the maximal span-cores can be profitably exploited to significantly speed-up the basic algorithm.

Citations (22)

Summary

We haven't generated a summary for this paper yet.