Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FACEGAN: Facial Attribute Controllable rEenactment GAN (2011.04439v1)

Published 9 Nov 2020 in cs.CV

Abstract: The face reenactment is a popular facial animation method where the person's identity is taken from the source image and the facial motion from the driving image. Recent works have demonstrated high quality results by combining the facial landmark based motion representations with the generative adversarial networks. These models perform best if the source and driving images depict the same person or if the facial structures are otherwise very similar. However, if the identity differs, the driving facial structures leak to the output distorting the reenactment result. We propose a novel Facial Attribute Controllable rEenactment GAN (FACEGAN), which transfers the facial motion from the driving face via the Action Unit (AU) representation. Unlike facial landmarks, the AUs are independent of the facial structure preventing the identity leak. Moreover, AUs provide a human interpretable way to control the reenactment. FACEGAN processes background and face regions separately for optimized output quality. The extensive quantitative and qualitative comparisons show a clear improvement over the state-of-the-art in a single source reenactment task. The results are best illustrated in the reenactment video provided in the supplementary material. The source code will be made available upon publication of the paper.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Soumya Tripathy (8 papers)
  2. Juho Kannala (108 papers)
  3. Esa Rahtu (78 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com