Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Permutation Discovery in Causal DAGs (2011.03610v1)

Published 6 Nov 2020 in stat.ME, cs.LG, and stat.ML

Abstract: The problem of learning a directed acyclic graph (DAG) up to Markov equivalence is equivalent to the problem of finding a permutation of the variables that induces the sparsest graph. Without additional assumptions, this task is known to be NP-hard. Building on the minimum degree algorithm for sparse Cholesky decomposition, but utilizing DAG-specific problem structure, we introduce an efficient algorithm for finding such sparse permutations. We show that on jointly Gaussian distributions, our method with depth $w$ runs in $O(p{w+3})$ time. We compare our method with $w = 1$ to algorithms for finding sparse elimination orderings of undirected graphs, and show that taking advantage of DAG-specific problem structure leads to a significant improvement in the discovered permutation. We also compare our algorithm to provably consistent causal structure learning algorithms, such as the PC algorithm, GES, and GSP, and show that our method achieves comparable performance with a shorter runtime. Thus, our method can be used on its own for causal structure discovery. Finally, we show that there exist dense graphs on which our method achieves almost perfect performance, so that unlike most existing causal structure learning algorithms, the situations in which our algorithm achieves both good performance and good runtime are not limited to sparse graphs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.