Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity (1703.01196v1)

Published 3 Mar 2017 in cs.LG and stat.ML

Abstract: Learning the directed acyclic graph (DAG) structure of a Bayesian network from observational data is a notoriously difficult problem for which many hardness results are known. In this paper we propose a provably polynomial-time algorithm for learning sparse Gaussian Bayesian networks with equal noise variance --- a class of Bayesian networks for which the DAG structure can be uniquely identified from observational data --- under high-dimensional settings. We show that $O(k4 \log p)$ number of samples suffices for our method to recover the true DAG structure with high probability, where $p$ is the number of variables and $k$ is the maximum Markov blanket size. We obtain our theoretical guarantees under a condition called Restricted Strong Adjacency Faithfulness, which is strictly weaker than strong faithfulness --- a condition that other methods based on conditional independence testing need for their success. The sample complexity of our method matches the information-theoretic limits in terms of the dependence on $p$. We show that our method out-performs existing state-of-the-art methods for learning Gaussian Bayesian networks in terms of recovering the true DAG structure while being comparable in speed to heuristic methods.

Citations (54)

Summary

We haven't generated a summary for this paper yet.