A New Model-Free Method Combined with Neural Networks for MIMO Systems (2010.15338v13)
Abstract: In this brief, a model-free adaptive predictive control (MFAPC) is proposed. It outperforms the current model-free adaptive control (MFAC) for not only solving the time delay problem in multiple-input multiple-output (MIMO) systems but also relaxing the current rigorous assumptions for sake of a wider applicable range. The most attractive merit of the proposed controller is that the controller design, performance analysis and applications are easy for engineers to realize. Furthermore, the problem of how to choose the matrix {\lambda} is finished by analyzing the function of the closed-loop poles rather than the previous contraction mapping method. Additionally, in view of the nonlinear modeling capability and adaptability of neural networks (NNs), we combine these two classes of algorithms together. The feasibility and several interesting results of the proposed method are shown in simulations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.