Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Speech-Image Semantic Alignment Does Not Depend on Any Prior Classification Tasks (2010.15288v1)

Published 29 Oct 2020 in cs.LG, cs.CV, cs.IT, cs.MM, and math.IT

Abstract: Semantically-aligned $(speech, image)$ datasets can be used to explore "visually-grounded speech". In a majority of existing investigations, features of an image signal are extracted using neural networks "pre-trained" on other tasks (e.g., classification on ImageNet). In still others, pre-trained networks are used to extract audio features prior to semantic embedding. Without "transfer learning" through pre-trained initialization or pre-trained feature extraction, previous results have tended to show low rates of recall in $speech \rightarrow image$ and $image \rightarrow speech$ queries. Choosing appropriate neural architectures for encoders in the speech and image branches and using large datasets, one can obtain competitive recall rates without any reliance on any pre-trained initialization or feature extraction: $(speech,image)$ semantic alignment and $speech \rightarrow image$ and $image \rightarrow speech$ retrieval are canonical tasks worthy of independent investigation of their own and allow one to explore other questions---e.g., the size of the audio embedder can be reduced significantly with little loss of recall rates in $speech \rightarrow image$ and $image \rightarrow speech$ queries.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)