Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase Aware Speech Enhancement using Realisation of Complex-valued LSTM (2010.14122v1)

Published 27 Oct 2020 in eess.AS, cs.AI, and eess.SP

Abstract: Most of the deep learning based speech enhancement (SE) methods rely on estimating the magnitude spectrum of the clean speech signal from the observed noisy speech signal, either by magnitude spectral masking or regression. These methods reuse the noisy phase while synthesizing the time-domain waveform from the estimated magnitude spectrum. However, there have been recent works highlighting the importance of phase in SE. There was an attempt to estimate the complex ratio mask taking phase into account using complex-valued feed-forward neural network (FFNN). But FFNNs cannot capture the sequential information essential for phase estimation. In this work, we propose a realisation of complex-valued long short-term memory (RCLSTM) network to estimate the complex ratio mask (CRM) using sequential information along time. The proposed RCLSTM is designed to process the complex-valued sequences using complex arithmetic, and hence it preserves the dependencies between the real and imaginary parts of CRM and thereby the phase. The proposed method is evaluated on the noisy speech mixtures formed from the Voice-Bank corpus and DEMAND database. When compared to real value based masking methods, the proposed RCLSTM improves over them in several objective measures including perceptual evaluation of speech quality (PESQ), in which it improves by over 4.3%

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)

Summary

We haven't generated a summary for this paper yet.