Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speaker Anonymization with Distribution-Preserving X-Vector Generation for the VoicePrivacy Challenge 2020 (2010.13457v2)

Published 26 Oct 2020 in cs.SD, cs.CL, cs.CR, and eess.AS

Abstract: In this paper, we present a Distribution-Preserving Voice Anonymization technique, as our submission to the VoicePrivacy Challenge 2020. We observe that the challenge baseline system generates fake X-vectors which are very similar to each other, significantly more so than those extracted from organic speakers. This difference arises from averaging many X-vectors from a pool of speakers in the anonymization process, causing a loss of information. We propose a new method to generate fake X-vectors which overcomes these limitations by preserving the distributional properties of X-vectors and their intra-similarity. We use population data to learn the properties of the X-vector space, before fitting a generative model which we use to sample fake X-vectors. We show how this approach generates X-vectors that more closely follow the expected intra-similarity distribution of organic speaker X-vectors. Our method can be easily integrated with others as the anonymization component of the system and removes the need to distribute a pool of speakers to use during the anonymization. Our approach leads to an increase in EER of up to $19.4\%$ in males and $11.1\%$ in females in scenarios where enroLLMent and trial utterances are anonymized versus the baseline solution, demonstrating the diversity of our generated voices.

Citations (19)

Summary

We haven't generated a summary for this paper yet.