Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Graph Laplacian with MCP (2010.11559v2)

Published 22 Oct 2020 in cs.LG and math.OC

Abstract: We consider the problem of learning a graph under the Laplacian constraint with a non-convex penalty: minimax concave penalty (MCP). For solving the MCP penalized graphical model, we design an inexact proximal difference-of-convex algorithm (DCA) and prove its convergence to critical points. We note that each subproblem of the proximal DCA enjoys the nice property that the objective function in its dual problem is continuously differentiable with a semismooth gradient. Therefore, we apply an efficient semismooth Newton method to subproblems of the proximal DCA. Numerical experiments on various synthetic and real data sets demonstrate the effectiveness of the non-convex penalty MCP in promoting sparsity. Compared with the existing state-of-the-art method, our method is demonstrated to be more efficient and reliable for learning graph Laplacian with MCP.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yangjing Zhang (12 papers)
  2. Kim-Chuan Toh (111 papers)
  3. Defeng Sun (81 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.