Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riemannian Langevin Algorithm for Solving Semidefinite Programs (2010.11176v6)

Published 21 Oct 2020 in stat.ML, cs.LG, and math.OC

Abstract: We propose a Langevin diffusion-based algorithm for non-convex optimization and sampling on a product manifold of spheres. Under a logarithmic Sobolev inequality, we establish a guarantee for finite iteration convergence to the Gibbs distribution in terms of Kullback--Leibler divergence. We show that with an appropriate temperature choice, the suboptimality gap to the global minimum is guaranteed to be arbitrarily small with high probability. As an application, we consider the Burer--Monteiro approach for solving a semidefinite program (SDP) with diagonal constraints, and analyze the proposed Langevin algorithm for optimizing the non-convex objective. In particular, we establish a logarithmic Sobolev inequality for the Burer--Monteiro problem when there are no spurious local minima, but under the presence saddle points. Combining the results, we then provide a global optimality guarantee for the SDP and the Max-Cut problem. More precisely, we show that the Langevin algorithm achieves $\epsilon$ accuracy with high probability in $\widetilde{\Omega}( \epsilon{-5} )$ iterations.

Citations (26)

Summary

We haven't generated a summary for this paper yet.