Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit Behavior and the Role of Augmentation in Projected Saddle Flows for Convex Optimization (2010.09496v1)

Published 19 Oct 2020 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we study the stability and convergence of continuous-time Lagrangian saddle flows to solutions of a convex constrained optimization problem. Convergence of these flows is well-known when the underlying saddle function is either strictly convex in the primal or strictly concave in the dual variables. In this paper, we show convergence under non-strict convexity when a simple, unilateral augmentation term is added. For this purpose, we establish a novel, non-trivial characterization of the limit set of saddle-flow trajectories that allows us to preclude limit cycles. With our presentation we try to unify several existing problem formulations as a projected dynamical system that allows projection of both the primal and dual variables, thus complementing results available in the recent literature.

Citations (2)

Summary

We haven't generated a summary for this paper yet.