Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Global Exponential Stability of Augmented Primal-Dual Gradient Dynamics for Constrained Convex Optimization (1903.09580v4)

Published 22 Mar 2019 in math.OC and cs.SY

Abstract: Primal-dual gradient dynamics that find saddle points of a Lagrangian have been widely employed for handling constrained optimization problems. Building on existing methods, we extend the augmented primal-dual gradient dynamics (Aug-PDGD) to incorporate general convex and nonlinear inequality constraints, and we establish its semi-global exponential stability when the objective function is strongly convex. We also provide an example of a strongly convex quadratic program of which the Aug-PDGD fails to achieve global exponential stability. Numerical simulation also suggests that the exponential convergence rate could depend on the initial distance to the KKT point.

Citations (5)

Summary

We haven't generated a summary for this paper yet.