Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Poincare: Recommending Publication Venues via Treatment Effect Estimation (2010.09157v2)

Published 19 Oct 2020 in cs.DL, cs.IR, cs.LG, and stat.ML

Abstract: Choosing a publication venue for an academic paper is a crucial step in the research process. However, in many cases, decisions are based solely on the experience of researchers, which often leads to suboptimal results. Although there exist venue recommender systems for academic papers, they recommend venues where the paper is expected to be published. In this study, we aim to recommend publication venues from a different perspective. We estimate the number of citations a paper will receive if the paper is published in each venue and recommend the venue where the paper has the most potential impact. However, there are two challenges to this task. First, a paper is published in only one venue, and thus, we cannot observe the number of citations the paper would receive if the paper were published in another venue. Secondly, the contents of a paper and the publication venue are not statistically independent; that is, there exist selection biases in choosing publication venues. In this paper, we formulate the venue recommendation problem as a treatment effect estimation problem. We use a bias correction method to estimate the potential impact of choosing a publication venue effectively and to recommend venues based on the potential impact of papers in each venue. We highlight the effectiveness of our method using paper data from computer science conferences.

Citations (2)

Summary

We haven't generated a summary for this paper yet.