Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Inexact Augmented Lagrangian Method for Second-order Cone Programming with Applications (2010.08772v3)

Published 17 Oct 2020 in math.OC

Abstract: In this paper, we adopt the augmented Lagrangian method (ALM) to solve convex quadratic second-order cone programming problems (SOCPs). Fruitful results on the efficiency of the ALM have been established in the literature. Recently, it has been shown in [Cui, Sun, and Toh, {\em Math. Program.}, 178 (2019), pp. 381--415] that if the quadratic growth condition holds at an optimal solution for the dual problem, then the KKT residual converges to zero R-superlinearly when the ALM is applied to the primal problem. Moreover, Cui, Ding, and Zhao [{\em SIAM J. Optim.}, 27 (2017), pp. 2332-2355] provided sufficient conditions for the quadratic growth condition to hold under the metric subregularity and bounded linear regularity conditions for solving composite matrix optimization problems involving spectral functions. Here, we adopt these recent ideas to analyze the convergence properties of the ALM when applied to SOCPs. To the best of our knowledge, no similar work has been done for SOCPs so far. In our paper, we first provide sufficient conditions to ensure the quadratic growth condition for SOCPs. With these elegant theoretical guarantees, we then design an SOCP solver and apply it to solve various classes of SOCPs, such as minimal enclosing ball problems, classical trust-region subproblems, square-root Lasso problems, and DIMACS Challenge problems. Numerical results show that the proposed ALM based solver is efficient and robust compared to the existing highly developed solvers, such as Mosek and SDPT3.

Summary

We haven't generated a summary for this paper yet.