Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness and tamed Euler schemes for McKean-Vlasov equations driven by Lévy noise (2010.08585v1)

Published 16 Oct 2020 in math.PR, cs.NA, and math.NA

Abstract: We prove the well-posedness of solutions to McKean-Vlasov stochastic differential equations driven by L\'evy noise under mild assumptions where, in particular, the L\'evy measure is not required to be finite. The drift, diffusion and jump coefficients are allowed to be random, can grow super-linearly in the state variable, and all may depend on the marginal law of the solution process. We provide a propagation of chaos result under more relaxed conditions than those existing in the literature, and consistent with our well-posedness result. We propose a tamed Euler scheme for the associated interacting particle system and prove that the rate of its strong convergence is arbitrarily close to $1/2$. As a by-product, we also obtain the corresponding results on well-posedness, propagation of chaos and strong convergence of the tamed Euler scheme for McKean-Vlasov stochastic delay differential equations (SDDE) and McKean-Vlasov stochastic differential equations with Markovian switching (SDEwMS), both driven by L\'evy noise. Furthermore, our results on tamed Euler schemes are new even for ordinary SDEs driven by L\'evy noise and with super-linearly growing coefficients.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Neelima (7 papers)
  2. Sani Biswas (3 papers)
  3. Chaman Kumar (17 papers)
  4. Christoph Reisinger (78 papers)
  5. Goncalo dos Reis (31 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.