Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive Euler-Maruyama scheme for McKean-Vlasov SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model (2005.06034v4)

Published 12 May 2020 in math.NA, cs.NA, and math.PR

Abstract: In this paper, we introduce adaptive Euler-Maruyama schemes for McKean-Vlasov stochastic differential equations (SDEs) assuming only a standard monotonicity condition on the drift and diffusion coefficients but no global Lipschitz continuity in the state variable for either, while global Lipschitz continuity is required for the measure component only. We prove moment stability of the discretised processes and a strong convergence rate of $1/2$. Several numerical examples, centred around a mean-field model for FitzHugh-Nagumo neurons, illustrate that the standard uniform scheme fails and that the adaptive approach shows in most cases superior performance to tamed approximation schemes. In addition, we introduce and analyse an adaptive Milstein scheme for a certain sub-class of McKean-Vlasov SDEs with linear measure-dependence of the drift.

Citations (36)

Summary

We haven't generated a summary for this paper yet.