Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Enabled Scalable Performance Prediction of Scientific Codes (2010.04212v2)

Published 8 Oct 2020 in cs.PF and cs.AR

Abstract: We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input, predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks, finally present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs. We further extend PPT-AMMP to predict the performance of scientific application (radiation transport), SNAP. We analyze the application of multi-variate regression models that accurately predict the reuse profiles and the basic block counts. The predicted runtimes of SNAP when compared to that of actual times are accurate.

Citations (3)

Summary

We haven't generated a summary for this paper yet.