Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual News: Benchmark and Challenges in News Image Captioning (2010.03743v3)

Published 8 Oct 2020 in cs.CV

Abstract: We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fuxiao Liu (17 papers)
  2. Yinghan Wang (7 papers)
  3. Tianlu Wang (33 papers)
  4. Vicente Ordonez (52 papers)
Citations (96)