Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dynamic Semantic Matching and Aggregation Network for Few-shot Intent Detection (2010.02481v2)

Published 6 Oct 2020 in cs.CL and cs.LG

Abstract: Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances. Although recent works demonstrate that multi-level matching plays an important role in transferring learned knowledge from seen training classes to novel testing classes, they rely on a static similarity measure and overly fine-grained matching components. These limitations inhibit generalizing capability towards Generalized Few-shot Learning settings where both seen and novel classes are co-existent. In this paper, we propose a novel Semantic Matching and Aggregation Network where semantic components are distilled from utterances via multi-head self-attention with additional dynamic regularization constraints. These semantic components capture high-level information, resulting in more effective matching between instances. Our multi-perspective matching method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances. We also propose a more challenging evaluation setting that considers classification on the joint all-class label space. Extensive experimental results demonstrate the effectiveness of our method. Our code and data are publicly available.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.