Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularizing Dialogue Generation by Imitating Implicit Scenarios (2010.01893v2)

Published 5 Oct 2020 in cs.CL

Abstract: Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Shaoxiong Feng (32 papers)
  2. Xuancheng Ren (59 papers)
  3. Hongshen Chen (23 papers)
  4. Bin Sun (74 papers)
  5. Kan Li (54 papers)
  6. Xu Sun (194 papers)
Citations (19)