Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal time-series forecasting with mixture predictors (2010.00297v1)

Published 1 Oct 2020 in cs.LG, cs.AI, cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: This book is devoted to the problem of sequential probability forecasting, that is, predicting the probabilities of the next outcome of a growing sequence of observations given the past. This problem is considered in a very general setting that unifies commonly used probabilistic and non-probabilistic settings, trying to make as few as possible assumptions on the mechanism generating the observations. A common form that arises in various formulations of this problem is that of mixture predictors, which are formed as a combination of a finite or infinite set of other predictors attempting to combine their predictive powers. The main subject of this book are such mixture predictors, and the main results demonstrate the universality of this method in a very general probabilistic setting, but also show some of its limitations. While the problems considered are motivated by practical applications, involving, for example, financial, biological or behavioural data, this motivation is left implicit and all the results exposed are theoretical. The book targets graduate students and researchers interested in the problem of sequential prediction, and, more generally, in theoretical analysis of problems in machine learning and non-parametric statistics, as well as mathematical and philosophical foundations of these fields. The material in this volume is presented in a way that presumes familiarity with basic concepts of probability and statistics, up to and including probability distributions over spaces of infinite sequences. Familiarity with the literature on learning or stochastic processes is not required.

Summary

We haven't generated a summary for this paper yet.