Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Training Data Augmentation for Deep Learning Radio Frequency Systems (2010.00178v4)

Published 1 Oct 2020 in cs.LG and eess.SP

Abstract: Applications of machine learning are subject to three major components that contribute to the final performance metrics. Within the category of neural networks, and deep learning specifically, the first two are the architecture for the model being trained and the training approach used. This work focuses on the third component, the data used during training. The primary questions that arise are what is in the data'' andwhat within the data matters?'' Looking into the Radio Frequency Machine Learning (RFML) field of Automatic Modulation Classification (AMC) as an example of a tool used for situational awareness, the use of synthetic, captured, and augmented data are examined and compared to provide insights about the quantity and quality of the available data necessary to achieve desired performance levels. There are three questions discussed within this work: (1) how useful a synthetically trained system is expected to be when deployed without considering the environment within the synthesis, (2) how can augmentation be leveraged within the RFML domain, and lastly, (3) what impact knowledge of degradations to the signal caused by the transmission channel contributes to the performance of a system. In general, the examined data types each have useful contributions to a final application, but captured data germane to the intended use case will always provide more significant information and enable the greatest performance. Despite the benefit of captured data, the difficulties and costs that arise from live collection often make the quantity of data needed to achieve peak performance impractical. This paper helps quantify the balance between real and synthetic data, offering concrete examples where training data is parametrically varied in size and source.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.