Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Evaluating Ensemble Post-Processing for Wind Power Forecasts (2009.14127v3)

Published 29 Sep 2020 in stat.AP

Abstract: Capturing the uncertainty in probabilistic wind power forecasts is challenging, especially when uncertain input variables, such as the weather, play a role. Since ensemble weather predictions aim to capture the uncertainty in the weather system, they can be used to propagate this uncertainty through to subsequent wind power forecasting models. However, as weather ensemble systems are known to be biased and underdispersed, meteorologists post-process the ensembles. This post-processing can successfully correct the biases in the weather variables but has not been evaluated thoroughly in the context of subsequent forecasts, such as wind power generation forecasts. The present paper evaluates multiple strategies for applying ensemble post-processing to probabilistic wind power forecasts. We use Ensemble Model Output Statistics (EMOS) as the post-processing method and evaluate four possible strategies: only using the raw ensembles without post-processing, a one-step strategy where only the weather ensembles are post-processed, a one-step strategy where we only post-process the power ensembles, and a two-step strategy where we post-process both the weather and power ensembles. Results show that post-processing the final wind power ensemble improves forecast performance regarding both calibration and sharpness, whilst only post-processing the weather ensembles does not necessarily lead to increased forecast performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.