Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A POD-Galerkin reduced order model for a LES filtering approach (2009.13593v1)

Published 28 Sep 2020 in math.NA and cs.NA

Abstract: We propose a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for a Leray model. For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. The main novelty of the proposed approach relies in applying spatial filtering both for the collection of the snapshots and in the reduced order model, as well as in considering the pressure field at reduced level. In both steps of the EF algorithm, velocity and pressure fields are approximated by using different POD basis and coefficients. For the reconstruction of the pressures fields, we use a pressure Poisson equation approach. We test our ROM on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number 0 <= Re <= 100. The accuracy of the reduced order model is assessed against results obtained with the full order model. For the 2D case, a parametric study with respect to the filtering radius is also presented.

Citations (39)

Summary

We haven't generated a summary for this paper yet.