Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simpler Grassmannian optimization (2009.13502v1)

Published 28 Sep 2020 in math.OC

Abstract: There are two widely used models for the Grassmannian $\operatorname{Gr}(k,n)$, as the set of equivalence classes of orthogonal matrices $\operatorname{O}(n)/(\operatorname{O}(k) \times \operatorname{O}(n-k))$, and as the set of trace-$k$ projection matrices ${P \in \mathbb{R}{n \times n} : P{\mathsf{T}} = P = P2,\; \operatorname{tr}(P) = k}$. The former, standard in manifold optimization, has the advantage of giving numerically stable algorithms but the disadvantage of having to work with equivalence classes of matrices. The latter, widely used in coding theory and probability, has the advantage of using actual matrices (as opposed to equivalence classes) but working with projection matrices is numerically unstable. We present an alternative that has both advantages and suffers from neither of the disadvantages; by representing $k$-dimensional subspaces as symmetric orthogonal matrices of trace $2k-n$, we obtain [ \operatorname{Gr}(k,n) \cong {Q \in \operatorname{O}(n) : Q{\mathsf{T}} = Q, \; \operatorname{tr}(Q) = 2k -n}. ] As with the other two models, we show that differential geometric objects and operations -- tangent vector, metric, normal vector, exponential map, geodesic, parallel transport, gradient, Hessian, etc -- have closed-form analytic expressions that are computable with standard numerical linear algebra. In the proposed model, these expressions are considerably simpler, a result of representing $\operatorname{Gr}(k,n)$ as a linear section of a compact matrix Lie group $\operatorname{O}(n)$, and can be computed with at most one QR decomposition and one exponential of a special skew-symmetric matrix that takes only $O(nk(n-k))$ time. In particular, we completely avoid eigen- and singular value decompositions in our steepest descent, conjugate gradient, quasi-Newton, and Newton methods for the Grassmannian.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.