Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Replica Analysis of the Linear Model with Markov or Hidden Markov Signal Priors (2009.13370v5)

Published 28 Sep 2020 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: This paper estimates free energy, average mutual information, and minimum mean square error (MMSE) of a linear model under two assumptions: (1) the source is generated by a Markov chain, (2) the source is generated via a hidden Markov model. Our estimates are based on the replica method in statistical physics. We show that under the posterior mean estimator, the linear model with Markov sources or hidden Markov sources is decoupled into single-input AWGN channels with state information available at both encoder and decoder where the state distribution follows the left Perron-Frobenius eigenvector with unit Manhattan norm of the stochastic matrix of Markov chains. Numerical results show that the free energies and MSEs obtained via the replica method are closely approximate to their counterparts achieved by the Metropolis-Hastings algorithm or some well-known approximate message passing algorithms in the research literature.

Citations (2)

Summary

We haven't generated a summary for this paper yet.