Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coded Kalman Filtering Over Gaussian Channels with Feedback (2310.11747v1)

Published 18 Oct 2023 in cs.IT, cs.SY, eess.SY, math.IT, and math.OC

Abstract: This paper investigates the problem of zero-delay joint source-channel coding of a vector Gauss-Markov source over a multiple-input multiple-output (MIMO) additive white Gaussian noise (AWGN) channel with feedback. In contrast to the classical problem of causal estimation using noisy observations, we examine a system where the source can be encoded before transmission. An encoder, equipped with feedback of past channel outputs, observes the source state and encodes the information in a causal manner as inputs to the channel while adhering to a power constraint. The objective of the code is to estimate the source state with minimum mean square error at the infinite horizon. This work shows a fundamental theorem for two scenarios: for the transmission of an unstable vector Gauss-Markov source over either a multiple-input single-output (MISO) or a single-input multiple-output (SIMO) AWGN channel, finite estimation error is achievable if and only if the sum of logs of the unstable eigenvalues of the state gain matrix is less than the Shannon channel capacity. We prove these results by showing an optimal linear innovations encoder that can be applied to sources and channels of any dimension and analyzing it together with the corresponding Kalman filter decoder.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Barron Han (3 papers)
  2. Oron Sabag (27 papers)
  3. Victoria Kostina (49 papers)
  4. Babak Hassibi (143 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.