Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution (2009.12531v1)

Published 26 Sep 2020 in cs.NE

Abstract: Since the scale factor and the crossover rate significantly influence the performance of differential evolution (DE), parameter adaptation methods (PAMs) for the two parameters have been well studied in the DE community. Although PAMs can sufficiently improve the effectiveness of DE, PAMs are poorly understood (e.g., the working principle of PAMs). One of the difficulties in understanding PAMs comes from the unclarity of the parameter space that consists of the scale factor and the crossover rate. This paper addresses this issue by analyzing adaptive parameter landscapes in PAMs for DE. First, we propose a concept of an adaptive parameter landscape, which captures a moment in a parameter adaptation process. For each iteration, each individual in the population has its adaptive parameter landscape. Second, we propose a method of analyzing adaptive parameter landscapes using a 1-step-lookahead greedy improvement metric. Third, we examine adaptive parameter landscapes in PAMs by using the proposed method. Results provide insightful information about PAMs in DE.

Citations (2)

Summary

We haven't generated a summary for this paper yet.