Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Interpolated Collision Model Formalism (2009.10472v1)

Published 22 Sep 2020 in quant-ph

Abstract: The dynamics of open quantum systems (i.e., of quantum systems interacting with an uncontrolled environment) forms the basis of numerous active areas of research from quantum thermodynamics to quantum computing. One approach to modeling open quantum systems is via a Collision Model. For instance, one could model the environment as being composed of many small quantum systems (ancillas) which interact with the target system sequentially, in a series of "collisions". In this thesis I will discuss a novel method for constructing a continuous-time master equation from the discrete-time dynamics given by any such collision model. This new approach works for any interaction duration, $\delta t$, by interpolating the dynamics between the time-points $t = n\,\delta t$. I will contrast this with previous methods which only work in the continuum limit (as $\delta t\to 0$). Moreover, I will show that any continuum-limit-based approach will always yield unitary dynamics unless it is fine-tuned in some way. For instance, it is common to find non-unitary dynamics in the continuum limit by taking an (I will argue unphysical) divergence in the interaction strengths, $g$, such that $g2 \delta t$ is constant as $\delta t \to 0$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)