Papers
Topics
Authors
Recent
Search
2000 character limit reached

Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras

Published 20 Sep 2020 in math.RA | (2009.09368v2)

Abstract: In this paper, we introduce twisted Rota-Baxter operators on Lie algebras as an operator analogue of twisted r-matrices. We construct a suitable $L_\infty$-algebra whose Maurer-Cartan elements are given by twisted Rota-Baxter operators. This allows us to define cohomology of a twisted Rota-Baxter operator. This cohomology can be seen as the Chevalley-Eilenberg cohomology of a certain Lie algebra with coefficients in a suitable representation. We study deformations of twisted Rota-Baxter operators from cohomological points of view. Some applications are given to Reynolds operators and twisted r-matrices. Next, we introduce a new algebraic structure, called NS-Lie algebras, that are related to twisted Rota-Baxter operators in the same way pre-Lie algebras are related to Rota-Baxter operators. We end this paper by considering twisted generalized complex structures on modules over Lie algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.