Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scales and Hedges in a Logic with Analogous Semantics (2201.08677v1)

Published 21 Jan 2022 in cs.AI and cs.CY

Abstract: Logics with analogous semantics, such as Fuzzy Logic, have a number of explanatory and application advantages, the most well-known being the ability to help experts develop control systems. From a cognitive systems perspective, such languages also have the advantage of being grounded in perception. For social decision making in humans, it is vital that logical conclusions about others (cognitive empathy) are grounded in empathic emotion (affective empathy). Classical Fuzzy Logic, however, has several disadvantages: it is not obvious how complex formulae, e.g., the description of events in a text, can be (a) formed, (b) grounded, and (c) used in logical reasoning. The two-layered Context Logic (CL) was designed to address these issue. Formally based on a lattice semantics, like classical Fuzzy Logic, CL also features an analogous semantics for complex fomulae. With the Activation Bit Vector Machine (ABVM), it has a simple and classical logical reasoning mechanism with an inherent imagery process based on the Vector Symbolic Architecture (VSA) model of distributed neuronal processing. This paper adds to the existing theory how scales, as necessary for adjective and verb semantics can be handled by the system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hedda R. Schmidtke (1 paper)
  2. Sara Coelho (2 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.