Papers
Topics
Authors
Recent
2000 character limit reached

Encoding Robustness to Image Style via Adversarial Feature Perturbations

Published 18 Sep 2020 in cs.CV and cs.LG | (2009.08965v3)

Abstract: Adversarial training is the industry standard for producing models that are robust to small adversarial perturbations. However, machine learning practitioners need models that are robust to other kinds of changes that occur naturally, such as changes in the style or illumination of input images. Such changes in input distribution have been effectively modeled as shifts in the mean and variance of deep image features. We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce models that are robust to various unseen distributional shifts. We explore the relationship between these perturbations and distributional shifts by visualizing adversarial features. Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training. By fine-tuning neural networks on adversarial feature distributions, we observe improved robustness of networks to various unseen distributional shifts, including style variations and image corruptions. In addition, we show that our proposed adversarial feature perturbation can be complementary to existing image space data augmentation methods, leading to improved performance. The source code and pre-trained models are released at \url{https://github.com/azshue/AdvBN}.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.