Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of the Convergence Speed of the Arimoto-Blahut Algorithm by the Second Order Recurrence Formula (2009.08780v1)

Published 17 Sep 2020 in cs.IT and math.IT

Abstract: In this paper, we investigate the convergence speed of the Arimoto-Blahut algorithm. For many channel matrices the convergence is exponential, but for some channel matrices it is slower than exponential. By analyzing the Taylor expansion of the defining function of the Arimoto-Blahut algorithm, we will make the conditions clear for the exponential or slower convergence. The analysis of the slow convergence is new in this paper. Based on the analysis, we will compare the convergence speed of the Arimoto-Blahut algorithm numerically with the values obtained in our theorems for several channel matrices. The purpose of this paper is a complete understanding of the convergence speed of the Arimoto-Blahut algorithm.

Citations (9)

Summary

We haven't generated a summary for this paper yet.