Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisit the Arimoto-Blahut algorithm: New Analysis with Approximation (2407.06013v3)

Published 8 Jul 2024 in cs.IT and math.IT

Abstract: By the seminal paper of Claude Shannon \cite{Shannon48}, the computation of the capacity of a discrete memoryless channel has been considered as one of the most important and fundamental problems in Information Theory. Nearly 50 years ago, Arimoto and Blahut independently proposed identical algorithms to solve this problem in their seminal papers \cite{Arimoto1972AnAF, Blahut1972ComputationOC}. The Arimoto-Blahut algorithm was proven to converge to the capacity of the channel as $t \to \infty$ with the convergence rate upper bounded by $O\left(\log(m)/t\right)$, where $m$ is the size of the input distribution, and being inverse exponential when there is a unique solution in the interior of the input probability simplex \cite{Arimoto1972AnAF}. Recently it was proved, in \cite{Nakagawa2020AnalysisOT}, that the convergence rate is at worst inverse linear $O(1/t)$ in some specific cases. In this paper, we revisit this fundamental algorithm looking at the rate of convergence to the capacity and the time complexity, given $m,n$, where $n$ is size of the output of the channel, focusing on the approximation of the capacity. We prove that the rate of convergence to an $\varepsilon$-optimal solution, for any constant $\varepsilon > 0$, is inverse exponential $O\left(\log(m)/ct\right)$, for a constant $c > 1$ and $O\left(\log \left(\log (m)/\varepsilon\right)\right)$ at most iterations, implying $O\left(m n\log \left(\log (m)/\varepsilon\right)\right)$ total complexity of the algorithm.

Summary

We haven't generated a summary for this paper yet.