Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A review on asymptotic inference in stochastic differential equations with mixed-effects (2009.07516v1)

Published 16 Sep 2020 in math.ST and stat.TH

Abstract: This paper is a survey of recent contributions on estimation in stochastic differential equations with mixed-effects. These models involve N stochastic differential equations with common drift and diffusion functions but random parameters that allow for differences between processes. The main objective is to estimate the distribution of the random effects and possibly other fixed parameters that are common to the N processes. While many algorithms have been proposed, the theoretical aspects related to estimation have been little studied. This review article focuses only on theoretical inference for stochastic differential equations with mixed-effects. It has so far only been considered in some very specific classes of mixed-effect diffusion models, observed without measurement error, where explicit estimators can be defined. Within this framework, the asymptotic properties of several estimators, either parametric or nonparametric, are discussed. Different schemes of observations are considered according to the approach, associating a large number of individuals with, in most cases, high-frequency observations of the trajectories.

Summary

We haven't generated a summary for this paper yet.