Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian inference for diffusion driven mixed-effects models

Published 24 Jul 2015 in stat.CO, stat.AP, and stat.ME | (1507.06807v2)

Abstract: Stochastic differential equations (SDEs) provide a natural framework for modelling intrinsic stochasticity inherent in many continuous-time physical processes. When such processes are observed in multiple individuals or experimental units, SDE driven mixed-effects models allow the quantification of between (as well as within) individual variation. Performing Bayesian inference for such models, using discrete time data that may be incomplete and subject to measurement error is a challenging problem and is the focus of this paper. We extend a recently proposed MCMC scheme to include the SDE driven mixed-effects framework. Fundamental to our approach is the development of a novel construct that allows for efficient sampling of conditioned SDEs that may exhibit nonlinear dynamics between observation times. We apply the resulting scheme to synthetic data generated from a simple SDE model of orange tree growth, and real data consisting of observations on aphid numbers recorded under a variety of different treatment regimes. In addition, we provide a systematic comparison of our approach with an inference scheme based on a tractable approximation of the SDE, that is, the linear noise approximation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.