Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

G-rigid local systems are integral (2009.07350v2)

Published 15 Sep 2020 in math.AG and math.NT

Abstract: Let $G$ be a reductive group, and let $X$ be a smooth quasi-projective complex variety. We prove that any $G$-irreducible, $G$-cohomologically rigid local system on $X$ with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig when $G= \mathrm{GL}_n$, and it answers positively a conjecture of Simpson for $G$-cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.