Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithms for The Generalized Incremental Knapsack Problem (2009.07248v1)

Published 15 Sep 2020 in cs.DS

Abstract: We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of $n$ items, each associated with a non-negative weight, and $T$ time periods with non-decreasing capacities $W_1 \leq \dots \leq W_T$. When item $i$ is inserted at time $t$, we gain a profit of $p_{it}$; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time $(\frac{1}{2}-\epsilon)$-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and newly-revealed structural properties of nearly-optimal solutions, we turn our basic algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuri Faenza (37 papers)
  2. Danny Segev (18 papers)
  3. Lingyi Zhang (5 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.