Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming (1311.4563v1)

Published 18 Nov 2013 in cs.DS

Abstract: In the incremental knapsack problem ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items to be placed in the knapsack. Item $i$ has a value of $v_i$ and a weight of $w_i$ that is independent of the time period. At any time period $t$, the sum of the weights of the items in the knapsack cannot exceed the knapsack capacity $B_t$. Moreover, once an item is placed in the knapsack, it cannot be removed from the knapsack at a later time period. We seek to maximize the sum of (discounted) knapsack values over time subject to the capacity constraints. We first give a constant factor approximation algorithm for $\IK$, under mild restrictions on the growth rate of $B_t$ (the constant factor depends on the growth rate). We then give a PTAS for $\IIK$, the special case of $\IK$ with no discounting, when $T = O(\sqrt{\log N})$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Daniel Bienstock (35 papers)
  2. Jay Sethuraman (14 papers)
  3. Chun Ye (8 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.