Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Mixtures of Permutations: Groups of Pairwise Comparisons and Combinatorial Method of Moments (2009.06784v2)

Published 14 Sep 2020 in math.ST, cs.DS, cs.LG, stat.ML, and stat.TH

Abstract: In applications such as rank aggregation, mixture models for permutations are frequently used when the population exhibits heterogeneity. In this work, we study the widely used Mallows mixture model. In the high-dimensional setting, we propose a polynomial-time algorithm that learns a Mallows mixture of permutations on $n$ elements with the optimal sample complexity that is proportional to $\log n$, improving upon previous results that scale polynomially with $n$. In the high-noise regime, we characterize the optimal dependency of the sample complexity on the noise parameter. Both objectives are accomplished by first studying demixing permutations under a noiseless query model using groups of pairwise comparisons, which can be viewed as moments of the mixing distribution, and then extending these results to the noisy Mallows model by simulating the noiseless oracle.

Citations (7)

Summary

We haven't generated a summary for this paper yet.