Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Mixed Multinomial Logit Model from Ordinal Data (1411.0073v1)

Published 1 Nov 2014 in stat.ML

Abstract: Motivated by generating personalized recommendations using ordinal (or preference) data, we study the question of learning a mixture of MultiNomial Logit (MNL) model, a parameterized class of distributions over permutations, from partial ordinal or preference data (e.g. pair-wise comparisons). Despite its long standing importance across disciplines including social choice, operations research and revenue management, little is known about this question. In case of single MNL models (no mixture), computationally and statistically tractable learning from pair-wise comparisons is feasible. However, even learning mixture with two MNL components is infeasible in general. Given this state of affairs, we seek conditions under which it is feasible to learn the mixture model in both computationally and statistically efficient manner. We present a sufficient condition as well as an efficient algorithm for learning mixed MNL models from partial preferences/comparisons data. In particular, a mixture of $r$ MNL components over $n$ objects can be learnt using samples whose size scales polynomially in $n$ and $r$ (concretely, $r{3.5}n3(log n)4$, with $r\ll n{2/7}$ when the model parameters are sufficiently incoherent). The algorithm has two phases: first, learn the pair-wise marginals for each component using tensor decomposition; second, learn the model parameters for each component using Rank Centrality introduced by Negahban et al. In the process of proving these results, we obtain a generalization of existing analysis for tensor decomposition to a more realistic regime where only partial information about each sample is available.

Citations (52)

Summary

We haven't generated a summary for this paper yet.