Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short-Term Forecasting COVID-19 Cases In Turkey Using Long Short-Term Memory Network (2009.06343v2)

Published 14 Sep 2020 in cs.LG and stat.ML

Abstract: COVID-19 has been one of the most severe diseases, causing a harsh pandemic all over the world, since December 2019. The aim of this study is to evaluate the value of Long Short-Term Memory (LSTM) Networks in forecasting the total number of COVID-19 cases in Turkey. The COVID-19 data for 30 days, between March 24 and April 23, 2020, are used to estimate the next fifteen days. The mean absolute error of the LSTM Network for 15 days estimation is 1,69$\pm$1.35%. Whereas, for the same data, the error of the Box-Jenkins method is 3.24$\pm$1.56%, Prophet method is 6.88$\pm$4.96% and Holt-Winters Additive method with Damped Trend is 0.47$\pm$0.28%. Additionally, when the number of deaths data is also provided with the number of total cases to the input of LSTM Network, the mean error reduces to 0.99$\pm$0.51%. Consequently, addition of the number of deaths data to the input, results a lower error in forecasting, compared to using only the number of total cases as the input. However, Holt-Winters Additive method with Damped Trend gives superior results to LSTM Networks in forecasting the total number of COVID-19 cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Selahattin Serdar Helli (5 papers)
  2. Çağkan Demirci (1 paper)
  3. Onur Çoban (1 paper)
  4. Andaç Hamamci (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.