Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COVID-19 growth prediction using multivariate long short term memory (2005.04809v2)

Published 10 May 2020 in cs.LG and stat.ML

Abstract: Coronavirus disease (COVID-19) spread forecasting is an important task to track the growth of the pandemic. Existing predictions are merely based on qualitative analyses and mathematical modeling. The use of available big data with machine learning is still limited in COVID-19 growth prediction even though the availability of data is abundance. To make use of big data in the prediction using deep learning, we use long short-term memory (LSTM) method to learn the correlation of COVID-19 growth over time. The structure of an LSTM layer is searched heuristically until the best validation score is achieved. First, we trained training data containing confirmed cases from around the globe. We achieved favorable performance compared with that of the recurrent neural network (RNN) method with a comparable low validation error. The evaluation is conducted based on graph visualization and root mean squared error (RMSE). We found that it is not easy to achieve the same quantity of confirmed cases over time. However, LSTM provide a similar pattern between the actual cases and prediction. In the future, our proposed prediction can be used for anticipating forthcoming pandemics. The code is provided here: https://github.com/cbasemaster/lstmcorona

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Novanto Yudistira (27 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com