Logical and algebraic properties of generalized orthomodular posets (2009.05088v1)
Abstract: Generalized orthomodular posets were introduced recently by D. Fazio, A. Ledda and the first author of the present paper in order to establish a useful tool for studying the logic of quantum mechanics. They investigated structural properties of these posets. In the present paper we study logical and algebraic properties of these posets. In particular, we investigate conditions under which they can be converted into operator residuated structures. Further, we study their representation by means of algebras (directoids) with everywhere defined operations. We prove congruence properties for the class of algebras assigned to generalized orthomodular posets and, in particular, for a subvariety of this class determined by a simple identity. Finally, in contrast to the fact that the Dedekind-MacNeille completion of an orthomodular poset need not be an orthomodular lattice we show that the Dedekind-MacNeille completion of a stronger version of a generalized orthomodular poset is nearly an orthomodular lattice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.