Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Network Reliability Computation in Uncertain Graphs (2009.03158v1)

Published 4 Sep 2020 in cs.DS and cs.DB

Abstract: Network reliability is an important metric to evaluate the connectivity among given vertices in uncertain graphs. Since the network reliability problem is known as #P-complete, existing studies have used approximation techniques. In this paper, we propose a new sampling-based approach that efficiently and accurately approximates network reliability. Our approach improves efficiency by reducing the number of samples based on stratified sampling. We theoretically guarantee that our approach improves the accuracy of approximation by using lower and upper bounds of network reliability, even though it reduces the number of samples. To efficiently compute the bounds, we develop an extended BDD, called S2BDD. During constructing the S2BDD, our approach employs dynamic programming for efficiently sampling possible graphs. Our experiment with real datasets demonstrates that our approach is up to 51.2 times faster than the existing sampling-based approach with higher accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.